Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number
نویسندگان
چکیده
The stabbing number of a partition of a rectilinear polygon P into rectangles is the maximum number of rectangles stabbed by any axis-parallel line segment contained in P . We consider the problem of finding a rectangular partition with minimum stabbing number for a given rectilinear polygon P . First, we impose a conforming constraint on partitions: every vertex of every rectangle in the partition must lie on the polygon’s boundary. We show that finding a conforming rectangular partition of minimum stabbing number is NP-hard for rectilinear polygons with holes. We present a rounding method based on a linear programming relaxation resulting in a polynomial-time 2-approximation algorithm. We give an O(n logn)-time algorithm to solve the problem exactly when P is a histogram (some edge in P can see every point in P ) with n vertices. Next we relax the conforming constraint and show how to extend the first linear program to achieve a polynomial-time 2-approximation algorithm for the general problem, improving the approximation factor achieved by Abam, Aronov, de Berg, and Khosravi (ACM SoCG 2011).
منابع مشابه
A 3-Approximation Algorithm for Computing Partitions with Minimum Stabbing number of Rectilinear Simple Polygons
Let P be a rectilinear simple polygon. The stabbing number of a partition of P into rectangles is the maximum number of rectangles stabbed by any axis-parallel segment inside P . We present a 3-approximation algorithm for finding a partition with minimum stabbing number. It is based on an algorithm that finds an optimal partition for histograms.
متن کاملErratum to: Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number
In this note, we report an error in our paper “Computing Partitions of Rectilinear Polygons with Minimum Stabbing Number” [2]. Given an orthogonal polygon P and a partition of P into rectangles, the stabbing number of the partition is defined as the maximum number of rectangles stabbed by any orthogonal line segment inside P . Abam et al. [1] introduced the problem of finding a partition of P i...
متن کاملCounterexample for the 2-approximation of finding partitions of rectilinear polygons with minimum stabbing number
This paper presents a counterexample for the approximation algorithm proposed by Durocher and Mehrabi [1] for the general problem of finding a rectangular partition of a rectilinear polygon with minimum stabbing number.
متن کاملOn Rectilinear Partitions with Minimum Stabbing Number
Let S be a set of n points in R, and let r be a parameter with 1 6 r 6 n. A rectilinear r-partition for S is a collection Ψ(S) := {(S1, b1), . . . , (St, bt)}, such that the sets Si form a partition of S, each bi is the bounding box of Si, and n/2r 6 |Si| 6 2n/r for all 1 6 i 6 t. The (rectilinear) stabbing number of Ψ(S) is the maximum number of bounding boxes in Ψ(S) that are intersected by a...
متن کاملComputing conforming partitions of orthogonal polygons with minimum stabbing number
Let P be an orthogonal polygon with n vertices. A partition of P into rectangles is called conforming if it results from cutting P along a set of interior-disjoint line segments, each having both endpoints on the boundary of P . The stabbing number of a partition of P into rectangles is the maximum number of rectangles stabbed by any orthogonal line segment inside P . In this paper, we consider...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 50 شماره
صفحات -
تاریخ انتشار 2012